If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x^2)-4=164
We move all terms to the left:
(2x^2)-4-(164)=0
We add all the numbers together, and all the variables
2x^2-168=0
a = 2; b = 0; c = -168;
Δ = b2-4ac
Δ = 02-4·2·(-168)
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{21}}{2*2}=\frac{0-8\sqrt{21}}{4} =-\frac{8\sqrt{21}}{4} =-2\sqrt{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{21}}{2*2}=\frac{0+8\sqrt{21}}{4} =\frac{8\sqrt{21}}{4} =2\sqrt{21} $
| -u+242=52 | | -47x=-1 | | 8n^2-2n=0 | | 2a-10=4a+2 | | x=2x^2+5 | | 4/6x=12 | | X+(7•11/5-x)=470 | | 2x=6*2 | | 8+2r-5=8r+8-5r | | 2/3x=1/2x+12 | | 4(24-u/9)=-4u+12 | | (3+2y)/8=(1-y)/5 | | 2/3x=1/2x+9/24 | | x*2-5x-24=0 | | -5(3x+1)=35 | | 6-8x=-106 | | 2x-(3x-4)=(3x-5) | | 12x^2-12x+9=0 | | [4(k+2)-(3-k)=4 | | 3x^2+1x+30=0 | | 2v+88=19v-24 | | 10d+2=2d+50 | | (x-3)^2+5x=(x+3)(x+2) | | 2p+25=3p | | 6-(n+3)=3n+5-2 | | 9(x-9)=-77.4 | | 8(a+4)=79.2 | | 9e-8=17.2 | | -12x^2+12x-9=0 | | 2x+15=35−3x | | 21=9c-6 | | 24m+44=2m |